![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | No. of Sessions | Topics | Readings | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 1-3 | Introduction to Text Analytics | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Origin of Text Mining - Understanding Text – Applications – Information Visualization - Architecture for Text Mining Applications. | Chapter 1 (R1) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Mathematics Background: Probability - Bayes’s Rule - Probability Distribution Sampling Distribution - Matrices | Chapter 2 (R1) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 4-7 | Determining the vocabulary of terms | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Parsing unstructured text I: keywords, n-grams | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Markov Models and POS Tagging | Chapter 4 (R1) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Parsing unstructured text II: parse tree, stemming, lexicon and ontology | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Application - Stanfor NLP Kit | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 8 | Treating Text as Data - Features | Chapter 6 (R2) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Scoring, term weighting and the vector space model | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 9-11 | Exploratory analytics I: text clustering | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Mathematics Background: Clustering techniques | Chapter 16 and 17 (R2) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Applications of Text clustering - Document clustering | Chapter 8 (R1) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 12-14 | Exploratory analytics II: topic modeling | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Mathematics Background: Matrix decompositions and latent semantic indexing and Bayesian Distribution | Chapter 18 (R2) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | LSA, LDA and Word2Vec | Materials will be provided | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 15 | Text Summarization | Chapter 10 (R1) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 16-18 | Predictive analytics: text classification | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Mathematics Background: Suprevised Learning Algorithms | Reference book 3 | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | | Applications of Supervised Learning Algorithm | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 19 | Application: Sentiment analysis (Non-Supervised Learning methods) | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 20 | Project presentation | | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | Readings | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | R1 | Text Mining Application Programming by Manu Konchandy | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | R2 | Introduction to Information Retrieval by Manning Christopher D., Raghavan Prabhakar | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | Reference | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 1 | Foundations of Statistical Natural Language Processing (The MIT Press) by Christopher Manning | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 2 | Thomas W. Miller, Prentice Hall, “Data and Text Mining - A Business Applications Approach”, Second impression, 2011 | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 3 | Data Mining and Predictive Analytics, 2nd Edition by Daniel T. Larose, Chantal D. Larose | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | Evaluation | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 1 | Attendance and Class Participation 10% | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 2 | Mid Term of 25% weight | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 3 | Individual projects of 25% weight | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |
![](/icons/ecblank.gif) | 4 | End-term of 40% weight | ![](/icons/ecblank.gif) | ![](/icons/ecblank.gif) |