What is UML?

· Unified Modeling Language- language for specifying, visualizing and constructing the artifacts of software systems.

· A notational system (including the semantics for its notations) aimed at modeling systems using object-oriented concepts. However, the scope of UML is fairly broad and not limited to object oriented systems.

· Uses standard set of symbols.

· Accepted by the Object Management Group (OMG) as a standard. OMG is a consortium of over 700 software companies and aims to promote standards for software development. Refer to: www.omg.org
· Does not specify process- does not guide the developer in ‘how to do OOAD’ or what development process to follow.

· A modeling language consists of rules:

· Syntactic, Semantic, Pragmatic

-Syntax describes the symbols and how to combine them (spelling and grammar of a natural language)

-Semantics explains the meaning of each symbol and how to interpret a symbol by itself and in the context of other symbols (meanings of words and sentences in a natural language).

-Pragmatics defines the intentions of the symbols through which the purpose of a model is achieved and becomes understandable to others (corresponds to rules of good composition in a natural language).

· Rules for using notations

Goals of UML

· Model elements- Fundamental modeling concepts and semantics. Provide users a ready-to-use, expressive, visual modeling language to develop, and exchange meaningful models.

· Notations- Provide extensibility and specialization mechanisms to extend the core concepts.

· Be independent of particular programming languages and development processes.

· Encourage the growth of OO tools market.

· Support higher-level development concepts such as collaborations, frameworks, patterns, and components.

· Integrate best practices.

UML Precursors

· Object Oriented Analysis and Design(OOAD)/Booch Method: Grady Booch has done a lot of work with Rational Software in developing Ada systems. He defined the notion that a system is analyzed as a number of views, where each view is described by model diagrams [Booch 1994].

· The Object Modeling Technique(OMT): Developed at General Electric by James Rumbaugh and colleagues. OMT describes a system using three models: the object model, the dynamic model, and the functional model [Rumbaugh 1991].

· The Object Oriented Software Engineering(OOSE) and Objectory: Contribution of Ivar Jacobson based on his experiences with telephone switches for Ericsson. Both use the concept of Use Cases [Jacobson 1992].

· The Fusion method: Was developed by Coleman and others at Hewlett-Packard. It is called a second-generation method since it builds on the experiences of many of the initial methods [Coleman 1994].

· The Coad Yourdon Method(OOA/OOD): Was one of the first methods used. The method was simple to use but could not scale up to handle large systems.

· Sally Shlaer and Steve Mellor: wrote a pair of books [Shlaer 1989] and [Shlaer 1991] on analysis and design. Their technique has been used for real time systems.

· The Smalltalk community in Portland, Oregon, came up with a number of important contributions, chief among them being Responsibility Driven Design [Wirfs-Brook 1990] and Class-Responsibility-Collaborator (CRC) cards [Beek 1989].

System Development Phases

· Requirements Analysis

-Use-cases

· Analysis

-Static and Dynamic modeling

· Design

· Construction

· Testing

UML Overview

· Based mainly on Booch, OMT, and OOSE methods.

· Accepted as a standard by the OMG, in 1996.

· Defines a Notation and a Meta-Model.

-Notation- defines the modeling language

-Meta-Model

-defines the notation, and

-allows improvements of notation.

· A meta-model describes the constituents of a model and their relationships. So, UML can be used to describe UML.

Purpose:

-Description of the UML’s modeling concepts and corresponding notation.

-Description of UML modeling constructs and corresponding notation so that vendors can implement tools to support it.

-Basis for interchange format among such tools.

-Basis for establishing UML as a standard approach to OOAD.

· Meta-model concepts are intended for experienced people interested in object-oriented modeling and tool construction.

UML Components

· Views:

· Show different aspects of the system that are to be modeled.

· A view is an abstraction consisting of a number of diagrams.

· Only by defining a number of views, each showing a particular aspect of the system, can a complete picture of the system be constructed.

· Diagrams:
· are the graphs that describe the contents in a view.
· UML has 9 diagram types that are used in combination to provide all views of the system.
· Model Elements:
· represent common object-oriented concepts such as classes, objects, messages, and the relationships among these concepts including association, dependency, and generalization.
· General Mechanisms:
· provide extra comments, information, or semantics about a model element. They also provide extension mechanisms to adapt or extend the UML.
Views

· Use-Case View:
· Describes the functionality the system should deliver, as perceived by external actors.
· The use-case view is central, since its contents drive the development of other views.
· The final goal of the system is to provide the functionality described in this view.
· This view is also used to validate the system requirements
· Of interest to end users, analysts and testers
· Logical View (DesignView):
· Describes how the system functionality is provided
· Describes the logical structures which support the functional requirements expressed in the Use-case view
· It describes both static structure (classes, objects, and relationships), and the dynamic collaboration that occur when the objects send messages to each other.
· Component View (Implementation View):
· is a description of the implementation modules and their dependencies.
· is mainly for developers and consists of the component diagram.
· Concurrency View (Process View):
· Deals with issues of concurrency within the system
· Deals with the division of the system into processes and processors.
· This aspect, which is a nonfunctional property of the system, allows for efficient resource usage, parallel execution, and handling of asynchronous events from the environment.
· Deployment View:
· shows the physical deployment of the system, such as the computers and devices, and how they connect to one another
Diagrams

UML defines 9 types of diagram:

Diagram

Associated view

1 Use case diagram

Use case view

2 Object diagram

Use case and design views

3 Sequence diagram

Use case and design views

4 Collaboration diagram

Use case and design views

5 Class diagram

Design view

6 Statechart diagram

Design view

7 Activity diagram

Design view

8 Component diagram

Implementation view

9 Deployment diagram

Deployment view

-Each diagram is the result of a particular modeling technique.

-Collaboration diagrams and Sequence diagrams shows the interactions between classes.

-Activity diagrams show all the activities in a business process.

-Component diagrams shows dependencies between software components.

-Deployment diagrams show the distribution of software components to processors.

Deliverables

· Requirements Phase – Use-case diagrams, CRC model, UI Prototype.

· Analysis Phase – Class diagrams, Sequence diagram, Collaboration diagram, Activity diagram.

· Design – Class diagrams, Component diagram, Deployment diagram, State diagram.

General Mechanisms

· Adornments can be attached to model elements, which add semantics to the element.
Example: An adornment distinguishes a type from an instance. When an element represents a type, its name is displayed in boldface. When the same elements represent an instance, its name is underlined.

· A Note can be placed anywhere on any diagram, and contain any type of information. A note is typically attached to some element in the diagram with a dashed line.

· A Constraint is a restriction on an element that limits the usage of the element or the semantics of the element. Constraints are declared using the Object Constraint Language (OCL), which is the IBM’s contribution to UML.
Design and code

There is a close relationship between UML and object-oriented programming languages.

In particular, both view a running program as consisting of a collection of objects. This is an abstract view of what happens when a program runs. In the same way, UML diagrams provide an abstract view of certain aspects of programs.

 Specifies

UML

 Provides Abstract View of

Prog

 Specifies

Langs

 Compile Time

 Run Time

B _ __"C__

Making explicit the link with programs can provide a helpful

way of thinking about what UML diagrams actually mean.

The Software Development Process

The following terms are often used to describe the software

development process.

Linear - Describes a process where a set of activities is carried out in a fixed order.

Iterative - Describes a process where a set of activities is repeatedly carried out until development is complete.

Incremental - Describes a process where a system’s functionality is implemented in stages, or increments, rather than all in one go.

· It is often stated that an iterative and incremental process is appropriate for object-oriented developments.

· It has also been stated that a system’s documentation should be presented as if a linear development had been carried out.

CASE Tool Functions

· Draw diagrams

· Act as a repository

· Support navigation

· Provide multi-user support

· Generate code

· Reverse engineer

· Integrate with other tools

The model repository is a database that contains information about all elements used in the model. Using this, the tool should be able to perform consistency checks, reporting, and reuse of modeling elements.

Navigation is supported by hyperlinks. Parts of the diagram should be expandable or collapsible. Complex diagrams are better understood by defining filters, which separate or highlight some selected area.

Target languages for code generation are Java, C++, or Smalltalk, however languages such as SQL can also be generated. The code generator generally retains manually entered code.

Reverse-engineering is almost the opposite of code-generation. Code is read and analyzed by the tool, and diagrams are created that show the static structure of the code.

Traditional modeling tools are becoming integrated with other tools used in system development, such as IDEs, configuration and version tools, documentation tools, testing tools, GUI builders, requirements specification tools, and project management & process management tools.

Object

Structures

UML Model

Executing

Program

Source

Code

PAGE
11

