Class Diagram

· Describes the static view of the system.

· Defines foundations for other diagrams.

· Shows classes- Object diagram is a variant of class diagram, which shows instances.

· Class can directly be implemented by an OOPL

· Classes need to be identified and described.

· Class diagrams show classes and relationships between classes.

· Relationships include:

-Associations

-Aggregations

-Generalizations

-Dependencies

-Refinements

Finding Classes:

· Physical entity

-Customer, Book, Car, Container, Manual

· Conceptual entity

-Loan, Order, Registration, Organization, Transaction, Policy

· Analysis focuses on problem domain

· Design focuses on solution domain

Some questions that can help identify classes:

· Do we have information that should be stored or analyzed?

· Do we have organizational parts?

· Do we have external systems?

· Which roles are played by actors?

Other techniques:

· Lexical analysis: A class name should be a noun, preferably qualified by an adjective.

· Interview with domain experts

· General knowledge about problem domain

Stereotyped classes:

· Boundary objects

-Interact with actors outside the system

-Pass messages to and from them to objects inside the system

· Control objects

-Control interactions between groups of objects

· Entity objects

-Represents entities in problem domain

· Structuring objects

-Manage complex relationships

· Service objects

-Provide common service eg, financial calculations.

Class Diagram:

· Name compartment: boldface, centered

· Attribute compartment:

-Typically primitive types

-Visibility- public(+), private(-), protected(#)

-class scope variable, underlined.

Object Diagrams:

· Object has two compartments.

· Objectname : classname

Associations

· An association or link between classes is shown as a line between the two objects and/or classes annotated suitably to describe its properties.

· Shows semantic connection (relationship) between instances of classes.

· Normally bi-directional. Each association has two roles.

 Employs

 1..*

 1

 Employed by

· The multiplicity of an association indicates how many objects may participate in a given relationship.

· * represents the range 0…infinity

· A single value fixes the number of instances that must participate.

· A range can be indicated by L…U, where L, U are lower and upper bounds.

· The most common multiplicities in practice are 1..*

(at least one) and 0..1 (at most one)

Recursive Association: Between a class and itself.

 is supervised by

Qualified Association:

· Qualifier is used to identify one among the several instances at the many end.

· Reduces the effective multiplicity of a one-to-many, or a many-to-many association to 1 to 1.

 1..*

 1

· The qualifier rectangle is a part of the association path, not part of the class.

Or-Association:

· Between two or more associations eg, an instance of Insurance Contract can be associated with either an instance of Company or an instance of Person.

(Diagram at p – 9)

Ordered Association:

· Objects on the many side may be ordered.

· Default is unordered.

{ordered by increasing

 processing time}

 1

1..*

· This information will be used during the design and implementation of the association.

Other Association Concepts:

· Ternary associations can be converted into equivalent binary associations.

 1

1..40

 1

 1

· Associations may be represented by a class.

Useful to model an association as a class with some attributes, which cannot be attached to either object.

Aggregation

· Shows whole-part relationship

· Special case of association

· A diamond is attached to the class representing the container or aggregate.

Shared aggregation:

· The parts may be parts in any of the wholes eg, team and person. Shown by hollow a diamond.

Composition aggregation:

· The parts ‘live’ inside the whole eg, document and paragraph. They are destroyed if the whole is destroyed.

Generalization

· UML defines: “A taxonomic relationship between a more general element and a more specific element. The more specific is fully consistent with the more general element and contains additional information.”

· An Abstract class is one, which cannot have any instances and is normally used to factor out common attributes and behavior.

· Aggregation shows ‘a-part-of’ relationship

· Generalization shows ‘a-kind-of’ relationship

 1 0..*

0..*

 0..*

 1..*

1..*

 1 0..*

0..*

 0..*

{ or }

 1..*

1..*

Or-Association

Account

-Balance: Real

-DateOpened: Date= CurrentDate

-AccountNumber: Integer

-NextAcountNumber: Integer

+GetBalance(): Real

+Deposit(amount:Real): Real

+Withdraw(amount:Real): Real

+GetNextAccountNumber(): Int

Jacc : Account

John : Person

Balance = 5400

DateOfOpening = “10/10/2000”

Name = ”John K”

Age = 24

Person

Company

Supervises

Employee

Person

Company

EmployeeId

Job

Machine

Language

Project

Programmer

Programmer

Project

Language

Project

Employee

Project

Time Card

Paragraph

Document

Vehicle

{abstract}

Truck

Boat

Car

Insurance

company

Insurance

contract

Person

Company

Insurance

contract

Insurance

company

Company

Person

PAGE
7

