Use Case Modeling

Use case: A use case is one complete user interaction with the system expressed in some suitable notation.

· Typical interactions between user and system.

· User goals vs. System Interactions.

· Components

-System

-Actors

-Use cases

Purpose:

· Describe functional requirements of system resulting in agreement between users and developers.

· Clear and consistent description of what the system should do.

· Basis for performing system tests.

· Ability to trace functional requirements to classes and operations.

Actors:

· Someone or something, which interacts with the system.

· Role played by a user with respect to the system.

· Actors carry out use-cases.

· Actors communicate with system by sending and receiving messages.

Use Cases:

· A set of sequences of actions a system performs that yield an observable result of value to a particular actor.
· Always initiated by an actor.

· Provides value to an actor.

· Represents a complete description.

Relationships between Use Cases:

· Extends: One Use Case extends another by adding actions to a general use case (<< extends>>)

· Uses: Abstracts common behavior (<<uses>>)

· Grouping: Use package to group similar elements.

Use Case Description:

· Objective

· How the use case is initiated

· Flow of messages between actors and the use case

· Alternative flow

· How the case finishes with a value delivered to the actor

Documenting Use Cases:

· A flow of events document is created for each use case.

· Written from an actor point of view.

· Details what the system must provide to the actor when the use case is executed.

· Typical contents:

-How the use case starts and ends

-Normal flow of events

-Alternate flow of events

-Exceptional flow of events

· Cross-reference to requirements.

Testing of Use Cases:

· Verification:
-Confirms that the system is developed according to specifications

-“Are we building the system right? ”

· Validation:

-Confirms that the system under development is the one that the end user really wanted

-“ Are we building the right system? ”

Realizing Use Cases:

· Use Cases are realized through a collaboration of objects in the system. Collaboration shows internal implementation-dependent solution.

· Scenario is an instance of a use case or collaboration.

[image: image1.png]Cancel Appointment %

Request Medication

PayBil

Clerk

Use Case Diagram

[image: image2.wmf]

A system boundary rectangle separates the clinic system from the external actors.

A use case generalization shows that one use case is simply a special kind of another. Pay Bill is a parent use case and Bill Insurance is the child. A child can be substituted for its parent whenever necessary. Generalization appears as a line with a triangular arrow-head toward the parent use case.

Include relationships factor use cases into additional ones. Includes are especially helpful when the same use case can be factored out of two different use cases.

· Both Make Appointment and Request Medication include Check Patient Record as a subtask.

· In the diagram, include notation is a dotted line beginning at base use case ending with an arrows pointing to the include use case. The dotted line is labeled <<include>>.

An extend relationship indicates that one use case is a variation of another. Extend notation is a dotted line, labeled <<extend>>, and with an arrow toward the base case. The extension point, which determines when the extended case is appropriate, is written inside the base case.
PAGE
6

_1094447662.doc
[image: image1.png]system boundary ——»

%

Patient

extension point

system name
—

Cancel Appointment

<sinclude>>

== &
Check Patient Record

<sincluge>> /!

Request Medication
<<odendn <_Deter Paymert

i

>‘

PayBil

Make Appointment -

X

Scheduler
include use case

x

| Doctor

extend use case

%

Extension points
Wore Treatment

generalization

Bill nsurance

Clerk

