Dynamic modeling

Shows dynamic interactions of objects at different times during the execution of the system.

Dynamic Diagrams: (Interaction Diagrams)

· State diagrams

· Sequence diagrams

· Collaboration diagrams

· Activity diagrams

State Diagrams:

· Describe which states an object can have during its life cycle, the behaviour in those states, along with what events cause the state to change.

· Ex: an invoice may be in paid state or unpaid state.

Sequence Diagrams:

· Describe how objects interact and communicate with each other.

· Primary focus is time.

· Shows how a sequence of messages are sent and received between a set of objects in order to perform some function.

Collaboration diagrams:

· Also describe how objects interact

· But, the focus is space

· The relationships between the objects are of particular interest, and are shown explicitly.

Activity Diagram:

· Yet another way of showing interactions

· But, focus is on work

· When objects interact, they also perform work in terms of activities

· These activities and their order are described in activity diagrams 

Note:

· Sequence, Collaboration, and Activity diagrams all show interactions

· Must make a choice as to which diagram to use when documenting interactions

Message Types:

Synchronous

Asynchronous

Simple


Simple:

· Represents a flat flow of control

· Control passes from one object to another

· Details of the communications irrelevant

Synchronous:

· Intended operations is completed

· Then the caller resumes execution

Asynchronous:

· No explicit return to the caller

· Caller continues to execute without waiting

State Diagram

· Captures the fife-cycles of objects, sub-systems, and systems.

· They tell the states an object can have

· And how events affect those states over time

· Events – received messages, time elapsed, errors, conditions becoming true

· A state diagram should be attached to all classes that have clearly identifiable states and complex behavior

· The diagram specifies the behavior, and how it differs depending on the current state

· Also illustrates which events will change the state of the objects of the class

States and Transitions:

· All objects have a state

· Results of previous activities performed by the object 

· Typically determined by the values of its attributes and links to other objects 

Ex:

· Invoice

· Car

· Engine

· Alok

· Debadutta

State changes when something happens – Event Invoice, car, Engine, Alok, Debadatta – states may change

Two dimensions/aspects of ‘dynamics’ of an object:

· Interactions

· Internal state changes

Interactions describe an object’s external behavior; how it interacts with other objects – sending messages, linking, unlinking

Internal state changes describe how objects are altering their internal stats – values of attributes

State diagrams show how objects react to events and change their internal state

Components:

· A starting point – solid circle

· Several end points – bull’s-eye

· State – rounded rectangle

· Transitions shown between the states as a line with an arrow from one state to another

· Transitions may be labeled with the event causing the state transition



Invoice Created


A state diagram may contain 3 compartments.

First – name of the state eg, idle, paid, moving etc

Second – optional – state variable compartment, where attributes/variables may be listed and assigned

Third – optional – activity compartment, where events and actions may be listed

3 standard events in the activity compartment

· Entry – specifies actions on entry of a state eg, assigning a value to an attribute, or sending a message

· Exit – used to specify actions on exit from a state

· Do – used  specify an action performed while in the state eg, sending a message, waiting, calculating etc.

· User-defined actions permissible too

















Formal syntax for the activity compartment :

Event - name argument - list / action – expression

Syntax for specifying a state – transition:

Event – signature [guard condition] / action – expression send clause

Event signature: event – name (parameter1, parameter2,…..)

Send clause:

Destination – expression. Dest – event – name (arg 1, arg 2,…..) where, Destination – expression evaluates to an object, or a set of objects

Example – State diagram for an elevator.

· The elevator starts at the first floor

· It can be moving up or down

· If the elevator is idle on one floor, a time – out event occurs after a period of time and the elevator moves back to the first floor

· The state diagram does not have an end point












 




With Guard Condition







[ timer = tune – out ]

More examples of state transitions with guard condition:

[ t = 25 secs ]

[ number of invoices > n ]

[ withdrawal  (amount [ balance > = amount ]

Guard Condition and action – expression:












































[ timer = time – out ] / go down ( first floor )

Send Clause:

· a special case of an action

· Is an explicit syntax for sending a message during transition between two states

· Consists of a destination – expression and an event – name 

· The destination – expr should be one that evaluates an object or a set of objects

· Event – name is an event meaningful to the dest object

· The destination object can be the object itself

[ timer = time – out ] / go down ( first floor ) = >

[ timer = time – out ] ^ self . go down ( first floor )

Out _ of _ paper ( ) ^ indicator . light ( )

State diagrams : (Wrap up)

· Captures lifecycles of objects, subsystems, and systems

· Used to model changes of state within an object

· State changes are called transitions
· Transitions generally occur on events, eg, entry, exit, do

· State diagram relates events and states

· Represents state sequences caused by event sequences

A state transition diagram is a directed graph with each node representing a state and each edge the transition between one state to another.

The edge is labeled with the event, which causes the transition.







On













Off


State Diagram

Example
The lights in a lecture theatre are controlled by a panel of 3 switches – On, Off, and Dim.

· ‘On’ switches the lights to full brightness

· ‘Off’ switches them off

· ‘Dim’ reduces the brightness to intermediate level

· Full brightness can be restored by pressing ‘On’ again

Draw a state diagram modeling the behaviour of the lighting system in the lecture theatre.
Lights on



































Dim			On








On Full





On Dimmed








Lights Off





Invoice Destroyed





Paying





Paid





Unpaid





Name





State variables





Activities





Playing





Entry/find start of track;


lower head


exit/raise head


do/play track





Login








Login time = Current time








Entry/type  “login”


Exit/login (user, pw)


Do / get UserName


Do / get Password


Help/display help





go up





On First floor





Moving up





arrived





go up





Moving to First Floor





arrived





Idle





Moving down





go down





idle





arrived





Moving down





Do/moving to floor





Moving to first floor





arrived





Moving up





Do/moving to floor





On first floor





time - out





Go up (floor)





On first floor





Moving up





Do/moving to floor





Moving down





Do/ moving to floor





Idle





Timer = 0





Do/increase


timer





Moving to first floor





arrived





arrived





Go up


(floor)





Go down (floor)





Go down (floor)





Go up


(floor)





arrived





arrived





Moving to first floor





Idle





Timer = 0





Do/increase


timer





Moving down





Do/ moving to floor





Moving up





Do/moving to floor





On first floor





On First


Floor








PAGE  
11

