Dynamic modeling

Shows dynamic interactions of objects at different times during the execution of the system.

Dynamic Diagrams: (Interaction Diagrams)

· State diagrams

· Sequence diagrams

· Collaboration diagrams

· Activity diagrams

State Diagrams:

· Describe which states an object can have during its life cycle, the behaviour in those states, along with what events cause the state to change.

· Ex: an invoice may be in paid state or unpaid state.

Sequence Diagrams:

· Describe how objects interact and communicate with each other.

· Primary focus is time.

· Shows how a sequence of messages are sent and received between a set of objects in order to perform some function.

Collaboration diagrams:

· Also describe how objects interact

· But, the focus is space

· The relationships between the objects are of particular interest, and are shown explicitly.

Activity Diagram:

· Yet another way of showing interactions

· But, focus is on work

· When objects interact, they also perform work in terms of activities

· These activities and their order are described in activity diagrams 

Note:

· Sequence, Collaboration, and Activity diagrams all show interactions

· Must make a choice as to which diagram to use when documenting interactions

Message Types:

Synchronous

Asynchronous

Simple


Simple:

· Represents a flat flow of control

· Control passes from one object to another

· Details of the communications irrelevant

Synchronous:

· Intended operations is completed

· Then the caller resumes execution

Asynchronous:

· No explicit return to the caller

· Caller continues to execute without waiting

State Diagram

· Captures the fife-cycles of objects, sub-systems, and systems.

· They tell the states an object can have

· And how events affect those states over time

· Events – received messages, time elapsed, errors, conditions becoming true

· A state diagram should be attached to all classes that have clearly identifiable states and complex behavior

· The diagram specifies the behavior, and how it differs depending on the current state

· Also illustrates which events will change the state of the objects of the class

States and Transitions:

· All objects have a state

· Results of previous activities performed by the object 

· Typically determined by the values of its attributes and links to other objects 

Ex:

· Invoice

· Car

· Engine

· Alok

· Debadutta

State changes when something happens – Event Invoice, car, Engine, Alok, Debadatta – states may change

Two dimensions/aspects of ‘dynamics’ of an object:

· Interactions

· Internal state changes

Interactions describe an object’s external behavior; how it interacts with other objects – sending messages, linking, unlinking

Internal state changes describe how objects are altering their internal stats – values of attributes

State diagrams show how objects react to events and change their internal state

Components:

· A starting point – solid circle

· Several end points – bull’s-eye

· State – rounded rectangle

· Transitions shown between the states as a line with an arrow from one state to another

· Transitions may be labeled with the event causing the state transition



Invoice Created


A state diagram may contain 3 compartments.

First – name of the state eg, idle, paid, moving etc

Second – optional – state variable compartment, where attributes/variables may be listed and assigned

Third – optional – activity compartment, where events and actions may be listed

3 standard events in the activity compartment

· Entry – specifies actions on entry of a state eg, assigning a value to an attribute, or sending a message

· Exit – used to specify actions on exit from a state

· Do – used  specify an action performed while in the state eg, sending a message, waiting, calculating etc.

· User-defined actions permissible too

















Formal syntax for the activity compartment :

Event - name argument - list / action – expression

Syntax for specifying a state – transition:

Event – signature [guard condition] / action – expression send clause

Event signature: event – name (parameter1, parameter2,…..)

Send clause:

Destination – expression. Dest – event – name (arg 1, arg 2,…..) where, Destination – expression evaluates to an object, or a set of objects

Example – State diagram for an elevator.

· The elevator starts at the first floor

· It can be moving up or down

· If the elevator is idle on one floor, a time – out event occurs after a period of time and the elevator moves back to the first floor

· The state diagram does not have an end point












 




With Guard Condition







[ timer = tune – out ]

More examples of state transitions with guard condition:

[ t = 25 secs ]

[ number of invoices > n ]

[ withdrawal  (amount [ balance > = amount ]

Guard Condition and action – expression:












































[ timer = time – out ] / go down ( first floor )

Send Clause:

· a special case of an action

· Is an explicit syntax for sending a message during transition between two states

· Consists of a destination – expression and an event – name 

· The destination – expr should be one that evaluates an object or a set of objects

· Event – name is an event meaningful to the dest object

· The destination object can be the object itself

[ timer = time – out ] / go down ( first floor ) = >

[ timer = time – out ] ^ self . go down ( first floor )

Out _ of _ paper ( ) ^ indicator . light ( )

State diagrams : (Wrap up)

· Captures lifecycles of objects, subsystems, and systems

· Used to model changes of state within an object

· State changes are called transitions
· Transitions generally occur on events, eg, entry, exit, do

· State diagram relates events and states

· Represents state sequences caused by event sequences

A state transition diagram is a directed graph with each node representing a state and each edge the transition between one state to another.

The edge is labeled with the event, which causes the transition.
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State Diagram

Example
The lights in a lecture theatre are controlled by a panel of 3 switches – On, Off, and Dim.

· ‘On’ switches the lights to full brightness

· ‘Off’ switches them off

· ‘Dim’ reduces the brightness to intermediate level

· Full brightness can be restored by pressing ‘On’ again

Draw a state diagram modeling the behaviour of the lighting system in the lecture theatre.
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