Sequence Diagrams

· Illustrates how objects interact with each other

· Focus on message sequences i.e., how messages are sent and received between a no. of objects

· Sequence diagrams have two axes

· Vertical axis shows time

· Horizontal axis shows a set of objects

· Reveals the interaction for a specific scenario – a specific interaction between objects at some point in time during the system’s execution

· Documents scenarios

· Objects involved in the sequence are shown as object rectangles with object/class name underlined

· Lifeline – a vertical dashed line, object’s lifeline, indicates object’s execution during the sequence

· Messages sent,

· Messages received, and

· Activation of the object

· Communication between the objects, shown as horizontal message lines between the objects’ lifelines

· The arrow specifies whether the message is synchronous, asynchronous, or simple

· To read the sequence diagram, start at the top of the diagram and read down to view the exchange of messages as time passes

· Sequence diagram can be used in two forms:

· The generic form, and

· The instance form

· Instance form describes a specific scenario in detail

· Documents one possible interaction

· Does not have any conditions, branches, or loops

· Shows the interaction for just the chosen scenario

· The generic form describes all possible alternatives in a scenario – branches, conditions, and loops may be included

Example: scenario - Opening an account

· Generic form sequence diagram would describe all possible alternatives

· A/c opening is successful

· Customer is not allowed to open a/c

· Money is immediately deposited in the account

· Instance form sequence diagram would have to choose one specific execution and stick to that case

· A no. of instance form sequence diagrams will be needed to show all the cases

· A message is a communication between objects

· A message conveys information with the expectation that some action will be taken (Receipt of a message is an event)

· When a message is received, an activity starts in the receiving object – called Activation
· Activation shows the focus of control – which object/s executes at some point in time

· An activated object is:

· Either executing its own code,

· Or, is waiting for the return of another object to which it has sent a message

· Activation is drawn as a thin rectangle on the object’s lifeline

· Lifeline represents the existence of an object at a particular time

· Messages are shown as arrows between the objects’ lifelines

· Each message may have a signature with name and parameters eg, print (file1: File)

· Messages may also have sequence numbers, but they are seldom used because the sequence is obvious

· Returns may be (from synchronous messages) shown as arrows, but are not always shown

· Messages can have conditions

· A condition must be true for the message to be sent

· Conditions are used to model branches – to decide whether or not to send a message

· When conditions are used to describe branches, several message arrows are drawn,

· but only one message is sent at a time, if conditions exclude each other

· if conditions do not exclude each other, the messages are sent concurrently

· A message can also be sent from an object to itself – the message symbol is drawn from the object symbol to itself

Change(CustData)

 UpdateCust(CustData)

Print(file)

Print(file)

[no queue]

Print(file)

Simple

message

Synchronous

 Guard

Message

condition

activation

Lifeline

Return

Concepts used in a Sequence Diagram
Print(file)

Print(file)
[Printer Free]

Print(file)

 [Pr. Busy]

 Store(File)

· The messages from PrintServer to the Printer has conditions that exclude each other

· Documentation of alternatives are shown

· Either send ‘print’ message to printer, or send ‘store’ message to the queue

· Sequence diagrams can have labels and comments in the left or right margin

· Labels can be timing remarks, descriptions of actions taken during activation, constraints etc

Print(file)

Print(file)

 a

Print(file)

{b-a<5 sec

 b

{b’-b<1sec

 b’

· Labels used to specify time constraints

· Time between a and b must not be more than 5 secs

· The message print from PrintServer must be received within 1 sec

· A slanted arrow shows that time between sending and receiving the message is substantial

Creating and Destroying Objects:

· Sequence diagrams may show how objects are created and destroyed as part of the scenario documented

· An object may create another object via a message

· The object created is drawn with its object symbol placed where it is created – on the time axis

· When an object is destroyed, it is marked with a large X, with no lifeline beyond this point

NewCust (Data)

 Customer (Data)

Time Axis

· The Customer message creates a new object of the Customer Class

RemoveCustomer()

 DeleteCustomer()

Time Axis

· The DeleteCustomer operation destroys a customer object

· The return from a creation or deletion may be shown explicitly

Sequence Diagram
Example – 1:

A nurse requests a diagnostic test at a medical lab. She asks the insurance company to approve the test expense. If the insurance company approves the test, the nurse will schedule the test on the date supplied by the medical lab.

Example – 2:

Draw a sequence diagram modeling flow of control in initiating a simple two-party phone call. Assume that the following 4 objects are involved.

· Two callers – S and R

· An unnamed telephone switch

· A conversation object

:CustWindow

:Customer

:Computer

:PrintServer

:Printer

:Printer

:PrintServer

:Computer

:Queue

:Printer

:PrintServer

:Computer

:Customer

:CustWindow

:CustWindow

:Customer

PAGE
11

