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This p t ^ r describes a simfdie algorithm for the solution of very large sequence
probiems witlutut the use of a computer. It produces approximate solutions to the n
job, m madune sequencing problem where no passing is considered and the criterion
is mjnimnin total elapsed time. Up to m-1 sequence may be found.

Introductitm

The search for a soluticm to the problem of finding an optimal or near optimal se-
quence of jobs bdng osheduled in a flow shop type situation has given consideration to
both exact and {^proximate techniques of solution. Exact techniques, which uraially
require an dectzonic computer, have been developed to minimize some well
criterion on problems involving a limited number of jobs [2,5,6,10].

[9] has pointed out that the researcher must be concemed not only with ob-
taining an optioofd solution but also with the practical and economical application of
ihe solution technique. It is the second aspect of the i»oblem which has led to the
conraderation oi approximate methods. At this point in time coii^ianies with sequenc-
ing problema involving large numbers of jobs and machines must use approximate
methods while awaiting furtiia* development of exact techniques or faster and more
economical computes. Anothra' reason to investi^te approximate mtethods is that
the procedural steps can be kept simple enough so that tixe problem solver does not
loae s i ^ t (A the overall view of tiie problem, thus enablii:^ man to make the beet use
of his intuition and judgment. See [4].

The procedure to be developed in tiiis paper csa. be calculated entirely by hand
and will pve approximate solutions to any size of n job, m machine problem. If a
computer is used, computation time even for lu;ge proUems is short. Not only does
it permit solutlcHi erf prol^ms far beyond tiie peaent capalality of escact techniques,
but its effectivffliecB is such timt some comptmies may find the approximate Bolution
to be more economical evea for tiiose probiems small eno t^ to be handled by exact
metibods.

The al^rithm is applied to tiie procesang of n jobs throu^ m maddnes witii each
job following the aame tedmok^cal order of machines. The jmsrang c& jobs is not
oonada^d by the algorithm; however a paasing ptY}cedure Eqpedfied by Palniar [8]
may be employed to fur&er r^ne the sequence generated by this algoritiun. In this
devdopment, machme order ^nll be A, B, C , . . . , M. The usual assumptions which
Y^ye been ^vm in «udier literakire apply [2,3,4,9,11].

During otir study two apjaoatiies w«e med. Tbdb first involved a {oocedure btiilding
a seqi^ice by vkwing total pnceB^ng time as brang made up of tliree pois, a fiissd
part in tiie c^iter with a variidide part on eadi ^id. The procedute then minimized

* R«oeiv«d Oetc^r 1967; revised April m» and Nov«ailier m».
t Partii^y sa^wrted by National Sduioe Foundation Gruit GK-IISG.
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the two variable portions of the total time. The second approach involved aa extension
of the S. M. Johnson [7] procedure applied to l a i ^ problems.

Sequences fotmd utilizing an algorithm developed from the first procedure gave
total elapsed times only slightiy smaller than those found when applsring an extension
of the John»)n procedure. Since procedural ramplicity was an objective of the research,
we used an extension of the rampler Johnson procedure modified to handle more than
two jobs.

Statement of the Algorithm

The algorithm presented here provides for the generation of up to m — 1 sequences.
Feasible sequence generation is accomplished in the following manner: let ta where
j = 1, 2, • • • , n, and i = 1, 2, • • • , m reprffient the time for processing the j**" job
on the i*'^ machine in an n-job, m-machine problem. Then p, where p ^ m — 1, aux-
iliary n-job, 2-machine problems can be defined a£ follows. In the k*^ auxiliary prob-
lem:

dji = X)*-i tn = the processing time for the j*"" job on machine 1 (Ml),

the processing time for the j * ' ' job on machine 2 (M2).

Establish n X m matrix of processing times, tji, where tji is processing time of jth
job on tth machine; j° = 1, 2, • • • , n and i • 1, 2, • • • ,m.

Establish number of auxiliary n-job, 2 machine problems, p, to be calculated, where
p g m - 1.

Set ii; — 1, for first auxiliary problem.

Compute 6^1 " ^{_i tji and establish column vector of processing times on Machine 1
(Ml) for each job for A;th auxiliary problem.

Compute ^j -• SJ-nH-i-* '/• and establish column vector of processing times on
Machine 2 (M2) for each job for ktb. auxiliary problem.

Apply S. M. Johnson's n-job, 2-machine algorithm (modified to handle ties) to the
n-job 2-macMne problem established and determine & and store.

• } Check k with p; if ifc < p, set fc " fc -f 1 and repeat; if I; ~ p, proceed

Using oHpnal n X m matrix of processing times, compute total proee«iing time for
each of the y ijequences generated.

totid pticessing time sequence as the best sequence.

1. Flow Chart for CunpbeU-Dudek Algorithm



B-632 H. O. CAHFBBU,, B. A. DtTDBK AND M. L. SHTIH

It should be noticed that fl*j is the sum of processii^ times of job j on machines A
through k; also 9fi is the sum of preceding times of job j on the last k machines in the
technological ( m ^ . Then S. M. Johnson's n-job, 2-machine al^ritJun modified to
handle ties is used to determine the optimal sequences Si,St, • • • , 5 , for tiie p aux-
iliary problems. The best sequence among these is chosen on the basis of minimum
total processing time on the ori^nal m machines. See Figure 1 for a fiow chart of the
^gorithm.

In using the S. M. Johnson [7] n-job, 2-machine algorithm, let the first machine be
Ml and the second M2. Select the smallest processing time in the two column process-
ing time mataix; Le., min Mli , • • • , Ml,,, M2i, • • • , M2,,]. If there is a tie, select
any within the tie set. (Note. This will be modified below). If the minimum processing
time is M l j , do the g*^ job first. If it is M2» do the A**" job last. Remove the process-
ing times of the sequeoced job from the processing time matrix. Apply this procedure
imtil all jobs have been ass^ed to a sequence petition. The resulting sequence will
minimize total proce^ng time for this specific 2-machine problem.

The breaking of ties is done in a manner that by observation tends to minimize
total make-6pan. Ties as used here are those occurrii^ va a row or column of any
auxiliary problem. When a tie occurs, a choice must be made between two positions
for each job involved. If the tie occurs in the k*^ auxiliary problem let the choice be-
tween these two positions be determined by the fc — 1** auxiliary problem. If the tie
cannot be broken there, proceed in order through auxiliary problems fc — 2, fc — 3,
• - • , 1. If it stall cannot be broken, try breakii^ it with auxiliary problems fc -f 1,
fc -f 2, • • • , m — 1. If the tie remains unbroken, build two ^quences from this point.

Jobs

1
2
3
4
5
6
7
8

A

13
31
17
19
94
8

10
80

Example

B

79
13
1

28
75
24
67
17

of an 8-Job,

C

23
14
c

10
t

3
13
38

7-Machine

D

71
94
23
4

58
32
1

40

Problem

E

60
60
36
58
c
4

92
66

F

27
61
8

73
68
94
75
25

8

2
57
86
40
46
^
29
88

Note. The elements of value c require aero processing time but must paas the machine.

"p" auxiliary two-st^e problrans wUl be workwi. For the first auxiliafy (fc = 1)
problem, the fc^ two colmnn preceding time matrix is established as derived earlier.
In this case it will be the processing times listed in tiie problem for machine A and
machine G as the proce^dng times on Ml tuid M2, respectively. Now applying the
S. M. Johnson algoritjim, M2i is minimum BO sequence job 1 last and remove the job
1 procesang time from tbffi proceesii^ time matiix. Next, Ml« is minimum so ^quence
job 6 first and remove tjie procesang times from tiie matrix. Continuing until all jobs
have been asmgned a sequent^ position yidds tiie sequent^ 6 7 3 4 2 8 5 1 with a total
proc^ang time of 618 and ti» iminiTniJ total time seqi^oce for this auxiliary problem.
Continuing in tliis way, settii^ fc >» 2, 3, 4, 5, and 6 mx sequraices will be generated,

(rf tiie sequence for fc = 4 is Aamn bdow. The proceffiing times on Ml
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are found by addii^ times on machines A, B, C, and D; the times on M2 are the
sums of tim^ on machines D, E, F, and G. These times are given below.

Machine

Job

1
2
3
4
5
6
7
8

Ml

186
152
41
61

227
67
81

175

U2

160
272
153
175
172
219
197
219

The algorithm generates the sequence 3 4 6 7 2 8 5 1 with total processing time of
632. The six sequences generated with fc equal to 1 through 6 are listed below:

t«>Se<i.

1
2
3
4
5
6

6
3
3
3
6
3

7
6
6
4
3
6

Sequence

3 4 28
2 4 7 8
4 2 7 8
6 7 2 8
4 7 2 8
47 8 2

5
5
5
5
1
1

1
1
1
1
5
5

Total Pncessmg;
Hme

618
628
596
632
605
595

The sixth sequence found has the least total processing time so it is selected. Using
the Smith-Dudek algorithm [10] it was determined that there is one optimal sequence
to this problem with a total time of 584 hours. I t i s 3 6 4 7 2 8 1 5 .

The error calculation adopted here is based on the percent deviation of the algo-
rithm's b ^ sequence time from the optimal solution time. Thus, in the example just
cited the error is

595 - 584
584

100 = 1.9%

V^iGcation
The empirical v^ification of the approximate procedure de^oped here is baaed

upon the solution of 340 problems rallying in size from 3 jobs and 3 machines to 8
jobs, 5 machines; and 10 problems ranging from 20 jote, 20 machines to 60 jobs, 30
madiines. Proc^sing tim^ were sdiected randomly from a rectangular distribution
ran^ng from 01 to 99. Only problems of mze 8 jots or lew w&e consddered in the
statistical determination of effectivene^ due to ihe difficulty in obtaining exact solu-
tions for the laige proUems. The la^er problems wete solv^, however, to detennine
the time required £or sdution and to make comparisons with dilutions from {mother
approximate algoritiim.

Expected Error

TaUe 1 gives tiie dktadbution of error in terms of pax%nt ikiviation the
best sequiQice tm» was from tlie optimal sequaoce time for a rample oi 20
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TABLE 1
DistribtUion of Error in Terma of Percent DeeieUion of Algorithm Bett

Sequence Time from Optimal Sequence Time

B

3
4
5
6
7
8

3
4
5
6
7
8

3
4
5
6
7

Total

m

3
3
3
3
3
3

5
5
5
5
5
5

7
7
7
7
7

SampW Sige

20
20
20
20
20
20

20
20
20
20
20
20

20
20
20
20
20

340

Nonben of ProUont with Perceat

0%

17
15
13
12
13
12

19
9

11
4
2
3

20
14
7
3
2

176

l>tvi*siim ai

0% < to S 5%

3
3
6
2
5
5

1
7
5
7
9
7

0
5
9
9

12

95

>s%

0
2
1
6
2
3

0
4
4
9
9

10

0
1
4
8
6

69

R««ge(%)

0-2.9
0-̂ 22.6
0-10.4
0-15.9
0-S.3

0-14.7

0-1.4
0-41.3
0-9.2

0-23.2
0-14.3
0-25.4

0
0-5.3

0-10.0
0-11.4
0-12.6

Avera^

Avenge Enor (90)

0.19
1.80
1.13
3.57
1.17
2.03j

0.07]
3.95
2.02
5.24
5.18
6.18]

o]
0.68
2.27
3.64
4.07

l . D O

3.77

2.13

2.54

in each cat^ory of problems considered. The mean raror for each problem group in
terms of percenta^ of optimal time is shown. Also diown axe mean errors for problem
groups with constant m.

Smilar taials were performed with processing times selected from normal and expo-
nential distributions. Effectiveness of the algorithm was, on the average, better with
these proUems than it was with the problems used in forming Table 1.

Compcaison to Palmer Algorithm

The Palmer [8] algorithm based upon a ranking of dope indices of jobs has several
amilarities witJi t ^ algorithm presented here. One sequence per faoblmn is found by
tile PahiKsr algturithm. Since the Palmor algoritiim is aa appcoximate ooetiiod, a com-
parsKtn of perftmnance oi the two a%)ritJmis was made after tiie Palmer algorithm
was jHD^ammed to run on the IBM 7040. Two measures of tsomptsmm, eSectiv^iffls
uiud computation t in^ woe used in (Kinjuncticm with two sets <rf problems.

The first set of poblems cont^dned d ^ t groups oi 20 {atddraiis pa: group with
kmma optimal seqi;^i(»s. The e i ^ t groups ranged in size fitmx 3 job—4 machine to
6 job~4 machine pxiblems aad 3 job—6 machine to 6 jdb—6 madbtine ptiblrans. All
processing times were selected randomly from a rectangular disttflmt^Hi ranging from
001 to 999. The problems were sdected from 4 machine and 6 machine probl^ns in
order to also give furtlier vmfication to Table 1 discussed fAwve.

Poreent axor for botdi algcmtliEtm was computed in tiie ioamiffir 6&sewBed &a&e!r.
2 etmtalns data on tiie 160 probtotffl in Ute fiz^ seL Hie C«iqa)^-Dudek se-
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quence times averaged 1.38% greater than optimal sequence timra as compared to an
avera^ error of 4.58% for the Palmer sequmce times.

The second set of problems contained ten problems of large sizes and were solved
only with the Campbell-Dudek and the Palm^ algorithms; ihe problem me precluded
use of enumeration or optimizii^ algorithms. Problems in the %cond set were formed
with random numbers drawn from a rectangular distribution with a range of 00 to 99.
For each of the problems, the Campbell-Dudek algorithm produced only the first six
sequences.

As in these problems the optimal solution was not known, tlie percent improvement
of the results of our algorithm compared with that of Palmer's was calculated, and
this is shown in Table 3. In nine out of the ten problems, the Can^^ibdl-Dudek se-
quence time was lower than that of the Palmar solution.

Computer computation time comparisons were made by solving identical sets of
problems of various azes with each algorithm. An IBM 7040 with online printer was
used; computation time included data input, data output, and solution output. Com-
putation times for both algorithms were very insenaLtive to the number of machines;

Error Comparison on

Pi^ilemSue

n

3
4
5
6

3
4
5
6

m

4
4
4
4

6
6
6
6

Totak

No.
ProUems

20
20
20
20

20
20
20
20

160

TABLE 2
Problems with Known Optimal Sequence Times

Cuiq>beU..Dndd:

No.

17
15
10
12

18
15
11
6

104

Largest
Enor(%)

8.1
10.1
13.8
11.5

1.4
4.1
6.9
9.0

Aveiue
Error fH)

.61]
^Hl 54
2.56r-"
1.24J

.12

.56
2.01
2.18

1.22

1.38

Palmer

No.
Optinnls

11
6
4
2

14
8
2
3

50

Lugest
Emw(%)

17.5
19.2
15.6
15.1

18.7
13.9
20.2
18.2

Averan
Error fife)

2.68
6.08
4.95
4.61

4.5B

2.77]

5.9or-^
6.52J

4.58

TABLE 3
Comparison on Prt^lems with Unknown Optimal Sequence Times

n

ao
20
20
20
40
40*
40
40
60
60

20
20
20
20
30
30
30
30
30
30

Sequence Time

C-D

2452
2^6
2^0
2422
4458
4567
4^6
4475
5747

m»

Pabner

2712
2542
23S2
2484
4574
^34
4mo
4665
5841
6997

10.60
1.84

- 0 . 3 4
2.56
2.60
0.80
2.31
4.25
1.64
2.63
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TABLE 4
Computer Computation Time

Number oi Join

8
10
20
40
60

Avenge Coaqmtatira Time (min)

C-D

.055

.067

.195

.752
1.806

Patner

.029

.037

.100

.223

.347

thus only the number of jobs waa considered. Table 4 contains the computation time
data. The Palmer algorithm produces one sequence per problem while the Campbell-
Dudek algorithm produces six. As a result. Palmer computation times are smaller.
However, with only 1.5 minutes difference in time on a 60 job problem, the choice
between the two al^rithms probably would be made on factors other than computa-
tion time.

CakukUion Time

Hand-calculation time for the approximate method varies from 2.5 minutes for a
3-job, 3-machine problem to 31.9 minutes for a 10-job, 15-machine problem. These
tim^ include finding only two trial sequences and computing their total time. Since
the number of individual arithmetic operations in any size i»t>blem are known, the
hand-calculation time for any size problem can be pr«iicted. The following times are
predicted for the larger problems which were not solved by hand:

20-job, 20-machine—130 minutes,
30-job, 20-machine—130 minutes,
60-job, 30-machine—380 minutes, and
60-job, 60-niachine—^740 minute.

Ectmomy ConsidereMons

The choice between exact sequencing procedures and approximate procedures exists
only for limited problem sizes. Computational experieace with the Smith-Dudek [10]
algorithm has indicated that problems with greater than 10 jobs require extended
computation time precluding finding optimal solutions. Thraefore, until improved
exact procedures are developed, approximate metiiods must be used.

If problems are of a size permitting a choice between appvximate and es^aai pro-
cedures, several factors must be conaidraed. Approximate methods will give results
quickly and with le^ computation costs than with an exact a%)rit^m. Conversely,
tiie approximate algraithm results will not be as accurate as results from an exact
fdgorithm. The two factors, computational o^ts and costs of iuinoptimal solutions,
appear to be of primiury importance when choosing between i^proximate and exact
sequencing procedures. Since each situation will be unique, an economic analjrsis of
the costs involved ^ould be mtuie b^ore a procedure iB selected.

Condusiaais

The approximate sequencing method desoibed provi(tes a pract i^ solution to lar^
sequencing proUems that cannot be served by exact i»o<^ures. Solutions produced
by this alforitJun ive optimal or near-optimal and are ^ a l y and quickly prcdiu^.

q g p y i
by this alforitJun ive optimal or near-optimal and are ^ a l y and
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Up to TO — 1 sequences can be found; if a computer is available, the expected error
could be redu«»d by finding most or all of the m — 1 sequences. If computations are
made by hand, l^s than m — 1 sequences might be considered adequate even though
some lass of effectivenras is incurred.
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